Distribution of amino acids in functional sites of proteins with high melting temperature
نویسندگان
چکیده
The stability of proteins in its native state has an important implication on its function and evolution. The functional site analysis may lead to better understanding of how these amino acid distributions influence the melting temperature of proteins. It has been reported that increasing the fraction of hydrophobic contacts in a protein tends to raise melting temperature; increasing the fraction of repulsive charge contacts decrease the melting temperature and consistent with a destabilizing effect. The role of amino acid distribution as hydrophobic, charged and polar residues in proteins and mainly in its functional sites has been studied. Due to limited data availability, redundancy check and controlled environment parameters, the study was carried out with ten single chain-wild proteins having melting temperature above 80°C at pH 7. The analysis depicts that, the entire protein, hydrophobic residues are more frequent in single chain proteins and charged residues are more frequent in multi-chains proteins. In functional sites of these proteins, hydrophobic and charged residues are equally frequent in single chain proteins and charged residues are very high in multi-chains proteins. But, the polar residue distribution remains same for both single chain and multi-chain proteins and its functional sites.
منابع مشابه
Short communication:Effect of salt and alkaline on the physicochemical properties of the protein isolates extracted from lanternfish (Benthosema pterotum)
Food proteins have long been recognized for their nutritional and functional properties. The nutritional properties of proteins are associated with their amino acid content. On the other hand, the functional properties of proteins relate to their contribution to the physiochemical and sensory properties of foods (Sila and Bougatef, 2016). Marine organisms contain proteins with high quantities o...
متن کاملSynthesis and Functionalization of Gold Nanoparticles by Using of Poly Functional Amino Acids
Synthesis and characterization of two functionalized gold nanoparticles by using of two poly functional amino acids (L-Arginine and L-Aspartic acid) are reported. The gold nanoparticles were reduced by sodium citrate and functionalized with L-Arginine at the pH of 7 and 11 and L-Aspartic acid at the pH of 7. Transmission electron microscopy, UV-Vis spectroscopy, dynamic light scattering, zeta p...
متن کاملHIGH-PERFORMANCE LIQUID CHROMATOGRAPHIC ANALYSIS OF SULFUR MUSTARD REACTION WITH AMINO ACIDS AND PROTEINS
The interaction of sulfur mustard with aminoacids and proteins has been investigated in this study. Rats were injected with sublethal doses of sulfur mustard subcutaneously and intraperitoneally. At different time intervals, plasma and urine samples were collected. The binding affinity of sulfur mustard with urinary and plasma proteins and enzymes was studied for the first time using non-i...
متن کاملOprF and OprL Conjugate as Vaccine Candidates against Pseudomonas aeruginosa; an in Silico Study
Introduction: Vaccine studies against Pseudomonas aeruginosa have often focused on outer membrane proteins (OPRs) due to their potent stimulation of the immune response. Using major outer membrane proteins of cell walls (mOMPs) of P. aeruginosa and other Gram-negative bacteria actively stimulate the immune system without any toxic side effects. Moreover, these antigens show immunological cross-...
متن کاملComparison of Essential and Non Essential Amino Acids in the Microbial Protein of Pleurotus Florida from the Lignocellulosic Wastes
Introduction: Cereal straws contain Cellulose, Hemicelluloses and Lignin and are most available renewable biopolymers. White rot fungi is used to convert these wastes into microbial protein. Pleurotus Florida are having the most delignification ability amongst other micro-organisms. We determined the amounts of protein, essential and non essential amino acids of the produced microbial protein f...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 8 شماره
صفحات -
تاریخ انتشار 2012